
www.manaraa.com

Research Article
A Layered Searchable Encryption Scheme with Functional
Components Independent of Encryption Methods

Guangchun Luo, Ningduo Peng, Ke Qin, and Aiguo Chen

School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu,
Sichuan 611731, China

Correspondence should be addressed to Ningduo Peng; nindo academia@163.com

Received 18 October 2013; Accepted 8 January 2014; Published 25 February 2014

Academic Editors: H.-E. Tseng and G. Wei

Copyright © 2014 Guangchun Luo et al.This is an open access article distributed under theCreative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Searchable encryption technique enables the users to securely store and search their documents over the remote semitrusted server,
which is especially suitable for protecting sensitive data in the cloud. However, various settings (based on symmetric or asymmetric
encryption) and functionalities (ranked keyword query, range query, phrase query, etc.) are often realized by different methods
with different searchable structures that are generally not compatible with each other, which limits the scope of application and
hinders the functional extensions. We prove that asymmetric searchable structure could be converted to symmetric structure, and
functions could be modeled separately apart from the core searchable structure. Based on this observation, we propose a layered
searchable encryption (LSE) scheme, which provides compatibility, flexibility, and security for various settings and functionalities.
In this scheme, the outputs of the core searchable component based on either symmetric or asymmetric setting are converted to
some uniformmappings, which are then transmitted to loosely coupled functional components to further filter the results. In such
a way, all functional components could directly support both symmetric and asymmetric settings. Based on LSE, we propose two
representative and novel constructions for ranked keyword query (previously only available in symmetric scheme) and range query
(previously only available in asymmetric scheme).

1. Introduction

Cloud storage provides an elastic, highly available, easily
accessible, and cheap repository to users to store and use
their data, and such a convenient way attracts more and
more people. In many cases, the users require their sensitive
data, such as business documents, to be secure against any
adversary or even the cloud provider, and therefore all data
must be encrypted before sending to the server [1]. However,
traditional encryption schemes (e.g., DES) do not provide any
functionality to the users such that searching for the desired
documents by keywords, as a basic function for storage
system, is quite impossible. The problem is that there is no
way to know if there exists such keywords in an encrypted
document without decryption, and apparently the server
should not have the decryption key.

Searchable encryption technique provides a solution to
such problem. It enables the users to encrypt their sensitive
data and store it to the remote server, while retaining the
ability to search by keywords.While searching, the user sends
to the server a secret token (a transformation of the queried
keywords); then the server uses the token to search over the
encrypted data and returns the matched documents. During
the process, the server does not know what the queried
keywords and the document contents are, and therefore the
privacy is guaranteed.

Many searchable encryption schemes have been proposed
with various settings and functionalities. For symmetric
searchable encryption schemes, the user encrypts, searches,
and decrypts the documents using his/her private symmetric
key. For asymmetric searchable encryption schemes, the data
sender encrypts the documents using the user’s public key,

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 153791, 16 pages
http://dx.doi.org/10.1155/2014/153791

www.manaraa.com

2 The Scientific World Journal

and the user searches and decrypts the documents using
the private key. Beyond the basic keyword matching, many
functions are also added to either symmetric or asymmetric
setting, such as range query, phrase query, and fuzzy keyword
query.

However, these functions are often realized by differ-
ent methods with different searchable structures which are
generally not compatible with each other. For example, the
asymmetric encryption scheme introduced in [2] realized
conjunctive, subset, and range queries. However, it is difficult
to figure out how to apply this method to symmetric setting.
Even for the same setting, such as the fuzzy query scheme
introduced in [3] and the rank-ordered query scheme intro-
duced in [4], it is difficult to figure out how to combine two
methods together since the functions are constructed based
on different indexing structures.

Layered searchable encryption (LSE) scheme aims to
provide compatibility, flexibility, and security for various
settings and functionalities. In this new framework, key-
words are firstly transformed to tokens that are filtered by
the core searchable component (symmetric or asymmetric
setting), and then the tokens are dynamically converted to
uniform mappings which are transmitted to many stand-
alone functional components (e.g., ranked keyword query
component, fuzzy query component, etc.) to further filter
the results. Since all functional components are independent
of each other and the interfaces are common, the functions
are compatible with each other and directly support both
symmetric and asymmetric settings, and adding or deleting a
function is quite simple since each function is loosely coupled
with the core searchable component. Furthermore, LSE
supports combined query. For example, the query “SELECT
∗ WHERE keywords = “cloud, storage, encryption” AND
“security classification > 5” ORDERED BY “keyword:cloud””
(to express the query, we adopt the SQL-like format used in
database) is a combination of three functional components:
basic query, range query, and ranked keyword query (in
this paper, we will present the concrete construction for this
example).

Furthermore, this framework is similar to the data stream
processing architecture [5], where functional components
could be treated as operator boxes and the whole scheme
could be treated as a data-flow system by which all processes
follow the popular boxes and arrows paradigm.Therefore, in
comparison to the previous searchable encryption schemes,
LSE is more suitable for distributed and parallel computing
environment.

In this paper, our contributions are the following. (1)We
propose a novel framework for designing searchable encryp-
tion scheme called layered searchable encryption (LSE),
which enables combined query and provides compatibility,
flexibility, and security for various settings and function-
alities. The new framework consists of a core searchable
component with a symmetric/asymmetric converter, many
functional components, and a common interface with new
security model. (2) We propose a concrete construction for
LSE that could theoretically combine all possible function-
alities which are proposed in the recent years, and prove
its semantic security for the interface. (3) As a complement

for the prior works, we formally define two new security
models for ranked keyword query and range query, called
semantic security against chosen ranked keyword attack
(CRKA) and chosen range attack (CRA) respectively, which
provide integral security models for cryptographic analysis.
(4) Based on LSE, we propose two representative and novel
constructions for ranked keyword query component (previ-
ously only available in symmetric scheme) and range query
component (previously only available in asymmetric scheme)
and prove them semantically secure under the new security
models.

The rest of the paper is organized as follows. Section 2
presents the related work. Section 3 presents the notations
and preliminaries. Section 4 presents the layered searchable
encryption scheme and the concrete construction. Section 5
discusses how to realize various functionalities and presents
the concrete constructions for ranked keyword query and
range query. Section 6 concludes this paper.

2. Related Work

Searchable encryption schemes are designed to help the users
to securely search over the encrypted data by keywords.
The first scheme was introduced in [6] by Song et al., and
later on many index-based symmetric searchable encryption
(SSE) schemes were proposed. Goh introduced the first
secure index in [7], and they also built the security model
for searchable encryption called Adaptive Chosen Keyword
Attack (IND-CKA). In [8], Curtmola et al. introduced two
constructions to realize symmetric searchable encryption:
the first construction (named SSE-1) is nonadaptive and
the second one (named SSE-2) is adaptive. A generalization
for symmetric searchable encryption was introduced in [9],
and a representative SSE system designed by Microsoft was
introduced in [10]. Another type of searchable encryption
named asymmetric searchable encryption (ASE) is public-
key based, which allows the user to search over the data
encrypted by some data senders using the public key of the
user. The first scheme was introduced in [11] by Boneh et
al. based on bilinear maps, and the improved definition was
introduced in [12].

There are many functional extensions for the search-
able encryption schemes beyond the basic precise keyword
matching. For symmetric setting, the authors in [4, 13, 14]
introduced ranked keyword search schemes based on order-
preserving encryption technique or two-round protocol,
which allows the server to only return the top-𝑘 relevant
results to the user. In [15], Golle et al. introduced a scheme
supporting conjunctive keyword searchwhich allows the user
to searchmultiple keywords in a single query. In [3, 16, 17], the
authors introduced fuzzy keyword search schemes based on
wildcard technique, which allows the user to submit only part
of the precise keyword. Similar to fuzzy keyword search but
different, the authors in [18, 19] introduced similarity search
schemes based on wildcard technique, which allows the
server to return the results similar to the queried keyword. In
[20, 21], the authors introduced phrase query schemes based
on trusted client-side server or binary search, which allows

www.manaraa.com

The Scientific World Journal 3

the user to query a phrase instead of multiple independent
keywords. For asymmetric setting, the authors in [22, 23]
introduced range query schemes. In addition, Boneh et al.
also introduced conjunctive and subset query in [22] based
on bilinear maps.

Note that most of these techniques are not compatible
with each other due to specific data structure andmathemati-
cal property. However, in the following sections, wewill prove
that functional structures and searchable structures could be
separately constructed, and asymmetric structures could be
converted to symmetric structures such that a compatible all-
in-one scheme is possible.

3. Notations and Preliminaries

We write 𝑥←
𝑈
𝑋 to denote sampling element 𝑥 uniformly

random from a set 𝑋 and write 𝑥 ← A to denote the output
of an algorithmA.Wewrite 𝑎 ‖ 𝑏 to denote the concatenation
of two strings 𝑎 and 𝑏. We write |𝐴| to denote its cardinality if
𝐴 is a set and write |𝑎| to denote its bit length if 𝑎 is a string.
A function 𝜇(𝑘) : N → R is negligible, if for every positive
polynomial 𝑝(⋅) there exists an inter 𝑁 > 0 such that for all
𝑘 > 𝑁, |𝜇(𝑘)| < 1/𝑝(𝑘). We write poly(𝑘) and negl(𝑘) to
denote polynomial and negligible functions in 𝑘, respectively.

We write Δ = (𝑤
1
, . . . , 𝑤

𝑛
) to denote a dictionary of 𝑛

words in lexicographic order. We assume that all words are
of length polynomial in 𝑘. We write 𝑑 to refer to a document
that contains poly(𝑘) words and write |𝑑| to denote the size
of the document in bytes. In some cases, we also write 𝑑 to
denote the document identifier that uniquely identifies the
document, such as amemory location.Wewrite X to denote a
component or a scheme and write X.func(. . .) to denote the
corresponding function for the component or an algorithm
in the scheme.

4. Layered Searchable Encryption Scheme

Layered searchable encryption scheme aims to combine
symmetric and asymmetric searchable encryption schemes
to provide a uniformmodel for functional extensions.There-
fore, we first revisit the basic symmetric and asymmetric
searchable encryption models and then build the layered
searchable encryption model based on these two different
settings. After that, we introduce the security model of
the new framework, and finally we present the concrete
construction.

4.1. Revisiting Searchable Encryption. Weadopt the definition
introduced by Curtmola et al. in [8] as a representative
model for symmetric searchable encryption scheme. In this
setting, the user who searches for the documents is also the
data sender who encrypts the documents. Therefore, some
efficient searching techniques, such as using a global index,
are used and the searchable structure may be a single index
file for all stored documents. For consistency with other
definitions, we make a little modification for the original
definition, and define the scheme as follows.

Definition 1 (symmetric searchable encryption). A symmet-
ric searchable encryption (SSE) scheme is a collection of
five polynomial-time algorithms SSE = (Gen, Enc, Token,
Search, Dec) as follows.

𝐾 ← Gen(1𝑘) is a probabilistic algorithm that takes as
input a security parameter 𝑘 and outputs a secret key
𝐾. It is run by the user and the key is kept secret.
(𝛾, 𝐶) ← Enc(𝐾,𝐷) is a probabilistic algorithm
that takes as input a secret key 𝐾 and a document
collection 𝐷 = (𝑑

1
, . . . , 𝑑

𝑛
) and outputs a searchable

structure 𝛾 and a sequence of encrypted documents
𝐶 = (𝑐

1
, . . . , 𝑐

𝑛
). It enables a user to query some key-

words and the server returns thematched documents.
For instance, in an index-based symmetric searchable
encryption scheme, 𝛾 is the secure index. It is run by
the user and (𝛾, 𝐶) is sent to the server.
𝑡 ← Token(𝐾, 𝑤) is a deterministic algorithm that
takes as input a secret key 𝐾 and a keyword 𝑤 and
outputs a search token 𝑡 (also named trapdoor or
capacity). It is run by the user.
𝐶
󸀠
← Enc(𝐶, 𝛾, 𝑡) is a deterministic algorithm that

takes as input the encrypted documents 𝐶, the
searchable structure 𝛾, and the search token 𝑡 and
outputs the matched documents (or identifiers) 𝐶󸀠 =
(𝑐
1
, . . . , 𝑐

𝑚
). It is run by the server and𝐶󸀠 is sent to the

user.
𝑑 ← Dec(𝐾, 𝑐) is a deterministic algorithm that takes
as input a secret key𝐾 and the encrypted document 𝑐
and outputs the recovered plaintext 𝑑. It is run by the
user.

We adopt the definition introduced by Boneh et al. in
[11] as a representative model for asymmetric searchable
encryption scheme. In this setting, the user generates the
public key and the private key. The data sender encrypts the
data using the public key, and the user searches and decrypts
the data using the private key. The original definition only
contains the searchable part, for consistency; we add two
algorithms and define the asymmetric searchable encryption
as follows.

Definition 2 (asymmetric searchable encryption). An asym-
metric searchable encryption (ASE) scheme is a collection of
seven polynomial-time algorithms ASE = (Gen, PEKS, Enc,
Token, Test, Search, Dec) as follows.

𝐾 ← Gen(1𝑘) is a probabilistic algorithm that takes
as input a security parameter 𝑘 and outputs a pub-
lic/private key pair 𝐾 = (𝐾pub, 𝐾priv). It is run by the
user and only𝐾priv is kept secret.
𝑠 ← PEKS(𝐾pub; 𝑤) is a probabilistic algorithm that
takes as input a public key 𝐾pub and a word 𝑤 and
outputs a searchable structure 𝑠. It is run by the data
sender and 𝑠 is attached to the encryptedmessage, and
the combination is sent to the server.
𝑐 ← Enc(𝐾pub; 𝑑) is a probabilistic algorithm that
takes as input a public key 𝐾pub and a document

www.manaraa.com

4 The Scientific World Journal

(message) and outputs the ciphertext 𝑐. It is run by
the data sender and 𝑐 (followed bymultiple searchable
structures) is sent to the server.

𝑡 ← Token(𝐾priv; 𝑤) is a deterministic algorithm that
takes as input a private key𝐾priv and a keyword𝑤 and
outputs a search token 𝑡. It is run by the user.

𝑏 ← Test(𝐾pub; 𝑠; 𝑡) is a deterministic algorithm
that takes as input the public key 𝐾pub, a searchable
structure 𝑠 ←PEKS(𝐾pub, 𝑤

󸀠
), and a search token 𝑡 ←

Token(𝐾priv, 𝑤) and outputs 𝑏 = 1 if 𝑤 = 𝑤󸀠 or 𝑏 = 0
otherwise. It is run by the server.

𝐶
󸀠
← Search(𝐾pub; 𝐶; 𝑆; 𝑡) is a deterministic algo-

rithm that takes as input the public key 𝐾pub, the
encrypted documents 𝐶 = (𝐶

1
, . . . , 𝐶

𝑛
), the corre-

sponding searchable structure set 𝑆 = (𝑆
1
, . . . , 𝑆

𝑛
)

(each 𝑆
𝑖
containsmultiple searchable structures corre-

sponding to the keywords of the document) and the
search token 𝑡 and outputs the matched documents
𝐶
󸀠
= (𝑐
1
, . . . , 𝑐

𝑚
) (the documents’ searchable struc-

tures satisfying 1 ← Test(𝐾pub, 𝑠, 𝑡)). It is run by the
server and 𝐶󸀠 is sent to the user.

𝑑 ← Dec(𝐾priv; 𝑐) is a probabilistic algorithm that
takes as input a private key 𝐾priv and a ciphertext 𝑐
and outputs the plaintext 𝑑. It is run by the user.

Unlike symmetric setting, the definition of asymmetric
setting only works on a single document. For a document
collection, it does not make any difference since the user
could execute the encryption algorithm for each document,
respectively.

By comparing the definitions of the two different settings,
there exists a common link between the queried keywords
and the matched documents: the searchable structure which
is constructed using either symmetric key or the public key.
Note that the structure is probabilistic in the asymmetric
setting, or else the server could directly launch the chosen
plaintext attack using the public key. However, we say that for
symmetric and asymmetric settings, the searchable structures
are both run-time deterministic. To prove this property, we
first introduce a lemma as follows.

Lemma 3. For asymmetric setting, if the token 𝑡 generated
using the private key 𝐾priv is deterministic, then the searchable
structure 𝑠 encrypted using the public key 𝐾pub is run-time de-
terministic when the the algorithm ASE.Test outputs 1, even if
the encryption is probabilistic.

Proof. Recall that the algorithm 𝑡 ← Token(𝐾priv, 𝑤) is deter-
ministic and 𝑠 ← PEKS(𝐾pub, 𝑤) is probabilistic. However,
for a single document, there only exists a single 𝑠 that links
to 𝑤. When 1 ← Test(𝐾pub, 𝑠, 𝑡), it implies that 𝑡 matches
𝑠. We replace 𝑡 with 𝑠; then the token 𝑡 = 𝑠, which could be
generated by the data sender, who could generate the token
using the public key 𝑡 ← Token󸀠(𝐾pub, 𝑤)which is in fact the
algorithm PEKS(𝐾pub, 𝑤). It seems that the data sender has
indirectly generated the token without having the private key.

Keywords

Tokenization

Converter

Mapping

Func.1

Documents

Decryption

Core (symmetric, asymmetric)

Filter

Func. 2

Global layer

Local layerFunc.. . .

Figure 1: Architecture for layered searchable encryption scheme.

Therefore, when the output of the test is 1, both the token and
the searchable structure map to 𝑡, which is deterministic.

Based on the lemma above, we introduce a theoremwhich
guides us to construct the converter in the layered searchable
encryption scheme.

Theorem 4 (run-time invariance). For both symmetric and
asymmetric settings, if the search token 𝑡 is deterministic, then
the searchable structure is run-time deterministic.

Proof. As proved in Lemma 3, the searchable structure is run-
time deterministic for asymmetric setting. For symmetric
setting, the searchable structure is encrypted using the sym-
metric key 𝛾 ← Enc(𝐾,𝐷), which is probabilistic. The token
𝑡 ← Token(𝐾, 𝑤) is deterministic. Similar to asymmetric
setting, when executing the deterministic algorithm Search,
thematched entries (probabilistic)map to 𝑡, and themapping
is deterministic (here, an entry is the encrypted data using
symmetric encryption that contains the information about
the matched document, such as the node in the inverted
index [8]). In other words, the searchable structure is run-
time deterministic because of the deterministicmapping.

4.2. Scheme Definition. Our primary goal is to separate the
functionalities from the searchable structures; therefore we
consider to construct the basic searchable structures and
various functions in different layers, as shown in Figure 1.

(i) Global layer: we name this layer “global” because all
documents and all searchable structures are involved.
In this layer, the basic searchable encryption scheme
(symmetric or asymmetric) is executed and a global
index could be constructed to improve search effi-
ciency. The server receives the search tokens (each
token is related to a keyword), executes the search
procedure, and outputs the matched documents. Fur-
thermore, the server converts the tokens (symmet-
ric or asymmetric) to the corresponding mappings
(another type of secret token) with uniform format
and transfers the mappings with the matched docu-
ments (or identifiers) to the local layer.

(ii) Local layer: we name this layer “local” because func-
tional structures are constructed for each document
independently. In this layer, each matched document
is further filtered by all functions (e.g., phrase query

www.manaraa.com

The Scientific World Journal 5

function) which execute separately. Only the docu-
ments that pass all filter tests are returned to the global
layer and finally return to the user.

For both layers, the framework consists of three different
components: the core symmetric and asymmetric searchable
components which provide basic keyword search, one or
more functional components which provides various func-
tionalities, and a converter. The converter is an algorithm
that provides a uniform interface for both symmetric and
asymmetric settings and provides uniform inputs for all
functions. We note that all components in the two layers
execute the search algorithm on the server side, and no
trusted third-party is required. Now we formally define the
scheme as follows.

Definition 5 (layered searchable encryption). A layered
searchable encryption (LSE) scheme is a collection of
five polynomial-time algorithms LSE = (Gen, Enc, Token,
Search, Dec) as follows.

𝐾 ← Gen(1𝑘) is a probabilistic algorithm that takes
as input a security parameter 𝑘 and outputs either
a symmetric encryption key 𝐾 = 𝐾priv or an
asymmetric encryption key pair 𝐾 = (𝐾pub, 𝐾priv). It
is run by the user and only the public key 𝐾pub is not
kept secret.
(𝐶; 𝐺; 𝐿) ← Enc(𝐾

𝑒
; 𝐷) is a probabilistic algorithm

that takes as input an encryption key 𝐾
𝑒
(𝐾
𝑒
= 𝐾priv

for symmetric setting or 𝐾
𝑒
= 𝐾pub for asymmetric

setting) and a document collection 𝐷 = (𝑑
1
, . . . , 𝑑

𝑛
).

It outputs 𝑛 encrypted documents 𝐶 = (𝑐
1
, . . . , 𝑐

𝑛
),

a single (index-based) global searchable structure
𝐺 or a sequence of global searchable structures
𝐺 = (𝐺

1
, . . . , 𝐺

𝑛
) corresponding to 𝑛 documents,

and a sequence of local functional structures 𝐿 =

(𝐿
1
, . . . , 𝐿

𝑛
) corresponding to 𝑛 encrypted docu-

ments. It is run by the data sender and (𝐶, 𝐺, 𝐿) are
sent to the server.
𝑇 ← Token(𝐾priv, 𝑤) is a deterministic algorithm
that takes as input a secret key 𝐾priv and a set of
keywords𝑊 = (𝑤

1
, . . . , 𝑤

𝑜
) with functional instruc-

tions and outputs the corresponding search tokens
𝑇 = (𝑡

1
, . . . , 𝑡

𝑜
) with functional instructions. It is run

by the user and 𝑇 is sent to the server.
𝐶
󸀠
← Search(𝐾pub; 𝐶; 𝐺; 𝐿; 𝑇) is a deterministic

algorithm that takes as input a public key 𝐾pub (only
for asymmetric setting), the encrypted documents 𝐶,
the global searchable structure𝐺, the local functional
structure 𝐿, and the search token 𝑇 and outputs the
matched documents 𝐶󸀠 = (𝑐

1
, . . . , 𝑐

𝑚
). It is run by the

server and 𝐶󸀠 is sent to the user.
𝑑 ← Dec(𝐾priv, 𝑐) is a deterministic algorithm that
takes as input a secret key 𝐾priv and an encrypted
document 𝑐, and outputs the plaintext 𝑑. It is run by
the user.

Functional instructions are separately specified by the
functionalities and are written as a single SQL-like query.

For example, the query “SELECT ∗ WHERE keywords =
“cloud, storage, encryption” AND “security classification >
5” ORDERED BY “keyword:cloud”” indicate that finding
the documents that satisfying: containing the keywords
“cloud, storage, encryption”, the security classification of the
documents > 5, sorting the matched documents by relevance
score according to the keyword “cloud” and return the top-
𝑘 relevant documents. Here we only write𝑊 = (𝑤

1
, . . . , 𝑤

𝑜
)

(e.g., 𝑊 = “cloud, storage, encryption”) as a representation
for any instruction that contains the keywords. Similarly,
the tokens 𝑇 are just a representation for all functional
instructions.

A functional component (FC) is a module in LSE that
provides a specific functionality. It generates a local func-
tional structure 𝐿 for each encrypted document and provides
filter service while searching. FC is designed to be compatible
with both symmetric and asymmetric settings. Therefore, a
conversion for the document as well as the query is required.
We formally define the FC as follows.

Definition 6 (functional component). A functional compo-
nent (FC) is a collection of two polynomial-time algorithms
FC = (Build, Filter) as follows.

𝐿
𝑑
← Build(𝑑; 𝑉

𝑑
) is an algorithm that takes as input

a document 𝑑 and the corresponding conversion 𝑉
𝑑

and outputs a functional structure 𝐿
𝑑
. It is run by

the data sender and 𝐿
𝑑
is appended to the encrypted

document.

𝐶
󸀠
← Filter(𝐶; 𝐿; 𝑉

𝑇
) is an algorithm that takes as

input the encrypted documents 𝐶 = (𝐶
1
, . . . , 𝐶

𝑥
),

the corresponding functional structure set 𝐿 =

(𝐿
1
, . . . , 𝐿

𝑥
), and the converted search tokens 𝑉

𝑇
=

(𝑉
1
, . . . , 𝑉

𝑥
) and outputs a subset of documents 𝐶󸀠. It

is run by the server.

4.3. Security Model. The security of LSE relies on the
algorithms used by the components. For example, if the
symmetric searchable encryption scheme introduced in [8]
is used as the core searchable component, then the core
searchable structure guarantees that it is semantic secure
against chosen keyword attack (CKA-secure). Similarly, the
functional components have their individual security guar-
antees. Therefore, the whole LSE scheme does not have
a uniform security model, and security models are built
separately and each component could be analyzed indepen-
dently. However, we could divide the security models into
three parts: searchable component security, interface security,
and functional component security. Searchable component
security is guaranteed by the underlying core searchable
encryption scheme. Therefore, we mainly discuss the other
two security models.

The interface is common, and therefore the data that flow
through the interface must be semantic secure. Informally
speaking, it must guarantee that the adversary cannot dis-
tinguish the input and the output of each component from
random strings. Semantic security against chosen plaintext
attack (CPA) is very important for the interface, or else

www.manaraa.com

6 The Scientific World Journal

the security of some components will be correlated such that
the loose coupling property is lost.

Wefirst define the notion of plain trace, which is the direct
information that could be captured from the data that flow
through the interface.

Definition 7 (plain trace). Let𝐷 = (𝑑
1
, . . . , 𝑑

𝑛
) be a document

collection. Let 𝑁 = (𝑁
1
, . . . , 𝑁

𝑛
) (only for asymmetric

setting) be a keyword-counter set where𝑁
𝑖
is the number of

keywords in 𝑑
𝑖
. Let the query history𝑊 = (𝑤

1
, . . . , 𝑤

𝑝
) be a

sequence of queried keywords. Let the search pattern 𝜎(𝑊)
be a 𝑝 × 𝑝 binary matrix such that for 1 ≤ 𝑖, 𝑗 ≤ 𝑝, the 𝑖th
row and 𝑗th column is 1 if𝑊

𝑖
= 𝑊
𝑗
and 0 otherwise.The plain

trace 𝜋(𝐷,𝑊) = (|𝑑
1
|, . . . , |𝑑

𝑛
|, 𝑁, 𝜎(𝑊)).

Note that plain trace is different from the notion of trace
introduced in [8] which further captures the logic links. We
will explain the reason after the definition of the security
model. We now present the security model for the interface.

Definition 8 (interface security against chosen plaintext
attack, interface-CPA-secure). Let Σ be the layered search-
able encryption scheme. Let 𝑘 ∈ N be the security parameter.
We consider the following probabilistic experiments whereA
is an adversary and S is a simulator.

Real
Σ,A(𝑘): the challenger runs Gen(1𝑘) to generate

the key 𝐾 = 𝐾priv (symmetric) or 𝐾 = (𝐾priv, 𝐾pub)
(asymmetric).The adversaryA generates a document
collection 𝐷 = (𝑑

1
, . . . , 𝑑

𝑛
), a sequence of query

𝑊 = (𝑤
1
, . . . , 𝑤

𝑝
), and receives (𝐶, 𝐺) ← Enc(𝐾

𝑒
, 𝐷)

and search tokens 𝑇 ← Token(𝐾priv,𝑊) from the
challenger.A generates a mapping𝑉

𝑇
as the input for

the functional component. Finally, A returns a bit 𝑏
that is output by the experiment.
Sim
Σ,A,S(𝑘): given the plain trace 𝜋(𝐷,𝑊)S gener-

ates (𝐶∗, 𝐺∗) and 𝑇∗ and then sends the results to
A. A generates a mapping 𝑉∗

𝑇
as the input for the

functional component. Finally,A returns a bit 𝑏 that
is output by the experiment.

We say that the interface of LSE is semantic secure against
chosen plaintext attack, if for all PPT adversaries A, there
exists a PPT simulator S such that

󵄨
󵄨
󵄨
󵄨
Pr [Real

Σ,A (𝑘) = 1] − Pr [Sim
Σ,A,S (𝑘) = 1]

󵄨
󵄨
󵄨
󵄨

≤ negl (𝑘) ,
(1)

where the probabilities are over the coins of Gen.
Note that the functional structure 𝐿 is not included here

since the functional component is loosely coupled with the
core. Therefore, the security of the functional component
is separate from the framework and should be defined and
analyzed separately.

The security model of the interface does not care about
the search algorithm and the number of queries (therefore,
only a single query sequence is presented). The reason is that
the other information about the queried keywords and the
documents are protected by the components. For example,

if some documents are returned by one token, then the
adversary could immediately infer that these documents
have a common keyword (even the tokens and documents
are indistinguishable from random in the interface), and
such logic links could be hidden by generating multiple
different tokens for one keyword (please refer to the adaptive
construction in [8]) and the protection is guaranteed in the
core searchable component.

Therefore, semantic security for the interface does not
guarantee that the whole scheme is secure against chosen
keyword attack or each component is secure under some
other security models. However, it provides the basic security
guarantee for the whole scheme and the independence for
each component, and we will show such independence in the
construction of the functional component later.

4.4. Concrete Construction. We first present the basic idea
for the search process and the converter; then we present
the template for constructing the functional component.
Finally, we present the constructions for LSE (symmetric and
asymmetric) in detail and prove the security of the interface.

4.4.1. Basic Idea. As shown in Figure 2, the basic search pro-
cess is as follows. The user transforms his queried keywords
𝑊 to tokens 𝑇 using the private key. The server receives the
tokens𝑇 and executes the search procedure over all encrypted
documents 𝑐

1
, . . . , 𝑐

𝑛
. Each 𝑐

𝑖
(1 ≤ 𝑖 ≤ 𝑛) is linked to a

global searchable structure 𝐺
𝑖
(if a global index is used, then

only a single searchable structure 𝐺 is used for all encrypted
documents) and a local functional structure 𝐿

𝑖
, and only

the global searchable structure 𝐺/(𝐺
1
, . . . , 𝐺

𝑛
) is used in this

step. Then the tokens 𝑇 are converted to the uniform tokens
𝑉
𝑇
, and both 𝑉

𝑇
and the matched 𝑥 encrypted documents

are transmitted to functional components FC
1
, . . . , FC

𝑒
to

further filter the results (e.g., phrase query filter). Each
component outputs a subset of the input documents, and
all components work serially since any document that does
not pass the current filter will be unnecessary for the next
filter. Finally, thematched encrypted documents 𝑐

1
, . . . , 𝑐

𝑚
are

returned to the user and the user decrypts them to obtain
the plaintexts 𝑑

1
, . . . , 𝑑

𝑚
. In order to construct a functional

component that supports both symmetric and asymmetric
settings, a conversion is needed to transform the plaintext to
a kind of ciphertext that is independent from the settings.We
call this independent ciphertext as a one-to-one “mapping”
since each word in the plaintext has a deterministic token
in the ciphertext. In addition, in order to provide a uniform
format for the functional components, a hash function is
used, and we will show the detailed construction in the
next section. Now we present the template for the functional
component (FC) in Algorithm 1.

We note that, in order to obtain the loose coupling
property, any specific parameter is not allowed.Therefore, the
uniform mappings of the words become the ideal common
parameter. Another advantage of the mapping is that the
main information needed for any functionality is retained:
the difference of each word and the order of all words in the
document. Based on this information, the word frequency,

www.manaraa.com

The Scientific World Journal 7

Input Token

User Search

Core (SSE/ASE) Converter

Output
m ≤ x ≤ n

Decrypt

Filter Convert

Filter

W = (w1, w2, . . . , w0) T = (t1, t2, . . . , t0)

c1, c2, . . . , cn

G/(G1, G2, . . . , Gn)

L1, L2, . . . , Ln

d1, d2, . . . , dm

c1, c2, . . . , cm

c1, c2, . . . , cx

G/(G1, G2, . . . , Gx)

L1, L2, . . . , Lx

VT = (V1, V2, . . . , Vx)

FC1 −→ FC2 −→ · · · −→ FCe

Figure 2: Search process of layered searchable encryption scheme.

Build(𝑑, 𝑉
𝑑
):

(1) input a document 𝑑 and the mappings of all words 𝑉
𝑑
in 𝑑.

(2) specified according to the functionality.
(3) output a local functional structure 𝐿

𝑑
.

Filter(𝐶, 𝐿, 𝑉
𝑇
):

(1) input a set of encrypted document 𝐶 = (𝑐
1
, . . . , 𝑐

𝑥
), the corresponding local functional

structures 𝐿 = (𝐿
1
, . . . , 𝐿

𝑥
), and the mappings of the queried keywords 𝑉

𝑇
= (𝑉
1
, . . . , 𝑉

𝑥
).

(2) specified according to the functionality.
(3) output a subset of the documents 𝐶󸀠 ⊆ 𝐶.

Algorithm 1: Template for functional component: FC.

rank, subset, and so forth could also be inferred without
the plaintext, which facilitates the designs of the Token and
Search algorithms.

4.4.2. Constructing Symmetric Part. For symmetric setting,
the deterministic mapping of a document could be computed
with ease. Let the tokens 𝑡

1
, 𝑡
2
, 𝑡
3
map to the words “day,” “by,”

and “night,” respectively. Then the deterministic mapping of
a sentence could be written as

“day by day, night by night” 󳨐⇒ 𝑡
1
𝑡
2
𝑡
1
𝑡
3
𝑡
2
𝑡
3
. (2)

Both the Enc and Token algorithms could generate these
mappings, and the main process is as follows. For each
document 𝑑, scan all words and compute the corresponding
tokens, which are further hashed to the fixed-size mappings.

Suppose there are 𝑛 documents 𝐷 = (𝑑
1
, . . . , 𝑑

𝑛
), 𝑛 cor-

responding ciphertexts 𝐶 = (𝑐
1
, . . . , 𝑐

𝑛
), 𝑒 functional compo-

nents FC= (𝐹
1
, . . . , 𝐹

𝑒
), and 𝑜 queried keywords𝑊 = (𝑤

1
, . . . ,

𝑤
𝑜
). In addition, we define a hash function as follows:

𝑓
ℎ
: {0, 1}

∗
󳨀→ {0, 1}

𝑙
, (3)

where 𝑙 is the length of the mapping according to the hash
function. For example, if we use MD5 [24] as 𝑓

ℎ
, then 𝑙

is 128 bit. For clarity, we present the encryption scheme in
Algorithm 2 and the search scheme inAlgorithm 3 andfinally
present the complete scheme in Algorithm 4.

4.4.3. Constructing Asymmetric Part. For asymmetric set-
ting, the data sender does not have the private key; therefore
the mapping will fail while searching since any encryption
using the public key is probabilistic (CPA security). For
example, let 𝑒 represent an encryption of aword, and the same
sentence will become (note that both 𝑒

1
and 𝑒
3
map to the

word “day”)

“day by day, night by night” 󳨐⇒ 𝑒
1
𝑒
2
𝑒
3
𝑒
4
𝑒
5
𝑒
6
. (4)

Therefore, we delay the construction for such mapping
after the construction of the searchable structure in algorithm
Enc and use this searchable structure as an independent
token for the corresponding word in algorithm Search.
Recall that 𝑠 ← PEKS(𝐾pub, 𝑤), then the tokens 𝑡1, 𝑡2, 𝑡3which
map to the words “day,” “by,” and “night” will be transformed
to 𝑠
1
, 𝑠
2
, 𝑠
3
when the test in the search algorithm outputs 1.

Then we have

“day by day, night by night” 󳨐⇒ 𝑠
1
𝑠
2
𝑠
1
𝑠
3
𝑠
2
𝑠
3
. (5)

In this way, the data sender could construct the deter-
ministic mapping for the document and indirectly obtain the
deterministic tokens just using the public key. Similar to the
symmetric setting, the process is as follows. For each docu-
ment𝑑, scan all words and compute the corresponding tokens
according to searchable structures, which are further hashed

www.manaraa.com

8 The Scientific World Journal

Input: the encryption key 𝐾
𝑒
= 𝐾priv, the documents𝐷 = (𝑑

1
, . . . , 𝑑

𝑛
).

Output:
(1) 𝐶: encrypted documents 𝐶 = (𝑐

1
, . . . , 𝑐

𝑛
).

(2) 𝐺: global searchable structure (index-based).
(3) 𝐿: local functional structures 𝐿 = (𝐿

1
, . . . , 𝐿

𝑛
).

Method:
(1) compute (𝛾, 𝐶) ← SSE⋅Enc(𝐾

𝑒
, 𝐷). Here 𝐶 = (𝑐

1
, . . . , 𝑐

𝑛
).

(2) for each document 𝑑
𝑖
∈ 𝐷 and the corresponding 𝑐

𝑖
(1 ≤ 𝑖 ≤ 𝑛) do

(3) scan 𝑑
𝑖
for all 𝑟 words to form a word list𝑊 = (𝑤

1
, . . . , 𝑤

𝑟
).

(4) for each word 𝑤
𝑘
(1 ≤ 𝑘 ≤ 𝑟) in𝑊 do

(5) compute 𝑡
𝑘
← SSE⋅Token(𝐾

𝑒
, 𝑤
𝑘
).

(6) compute V
𝑖𝑘
← 𝑓
ℎ
(𝑡
𝑘
).

(7) end for
(8) let 𝑉

𝑖
= (V
𝑖1
, . . . , V

𝑖𝑟
).

(9) for each functional component FCj (1 ≤ 𝑗 ≤ 𝑒) do
(10) compute 𝐿𝑗

𝑖
← FCj⋅Build(𝑑𝑖, 𝑉𝑖).

(11) end for
(12) append 𝐿

𝑖
= (𝐿
1

𝑖
, . . . , 𝐿

𝑒

𝑖
) to 𝑐
𝑖
.

(13) end for
(14) let 𝐺 = 𝛾 and 𝐿 = (𝐿

1
, . . . , 𝐿

𝑛
), and output (𝐶, 𝐺, 𝐿).

Algorithm 2: Encryption (symmetric): Enc(𝐾
𝑒
, 𝐷).

Input:
(1)𝐾pub: the public key is not available here.
(2) 𝐶: encrypted documents 𝐶 = (𝑐

1
, . . . , 𝑐

𝑛
).

(3) 𝐺: global searchable structure (index-based).
(4) 𝐿: local functional structures 𝐿 = (𝐿

1
, . . . , 𝐿

𝑛
).

(5) 𝑇: search tokens 𝑇 = (𝑡
1
, . . . , 𝑡

𝑜
).

Output: matched documents 𝐶󸀠 = (𝑐
1
, . . . , 𝑐

𝑚
).

Method:
(1) compute 𝐶󸀠 ← SSE⋅Search(𝐶, 𝐺, 𝑇). Here 𝐶󸀠 = (𝑐

1
, . . . , 𝑐

𝑥
).

(2) for each token 𝑡
𝑘
(1 ≤ 𝑘 ≤ 𝑜), compute V

𝑘
← 𝑓
ℎ
(𝑡
𝑘
).

(3) let 𝑉
1
= 𝑉
2
= ⋅ ⋅ ⋅ = 𝑉

𝑥
= (V
1
, . . . , V

𝑜
) and.

(4) for each functional component FCj (1 ≤ 𝑗 ≤ 𝑒) do
(5) let 𝐶󸀠 = (𝑐

1
, . . . , 𝑐

𝑥
), then the corresponding 𝐿󸀠 = (𝐿

1
, . . . , 𝐿

𝑥
)

and 𝑉
𝑇
= (𝑉
1
, . . . , 𝑉

𝑥
). Let 𝐿𝑗 = (𝐿𝑗

1
, . . . , 𝐿

𝑗

𝑥
).

(6) compute 𝐶󸀠 ← FCj⋅Filter(𝐶
󸀠
, 𝐿
𝑗
, 𝑉
𝑇
).

(7) end for

Algorithm 3: Search (symmetric): Search(𝐾pub, 𝐶, 𝐺, 𝐿, 𝑇).

Gen(1𝑘): compute 𝐾 = 𝐾priv ← SSE⋅Gen(1𝑘), and output 𝐾.
Enc(𝐾

𝑒
, 𝐷): described in Algorithm 2.

Token(𝐾priv,𝑊):
(1) for each keyword 𝑤

𝑘
(1 ≤ 𝑘 ≤ 𝑜) in𝑊 do

(2) compute 𝑡
𝑘
←SSE⋅Token(𝐾priv, 𝑤𝑘).

(3) end for
(4) output 𝑇 = (𝑡

1
, . . . , 𝑡

𝑜
).

Search(𝐾pub, 𝐶, 𝐺, 𝐿, 𝑇): described in Algorithm 3.
Dec(𝐾priv, 𝑐): compute 𝑑 ←SSE⋅Dec(𝐾priv, 𝑐), and output 𝑑.

Algorithm 4: LSE scheme: symmetric part.

www.manaraa.com

The Scientific World Journal 9

ASE.Test

Convert

FC.Filter

Gi: searchable structure

· · ·

L1 L2 · · · Le

Li : functional structure

...

...

T = (t1, . . . , t0)

Kpub s1 s2 sa

c1

c2

ci

cn

Figure 3: Data structure and search process for asymmetric setting.

Table 1: Searchable encryption schemes with various functionalities.

Symm. Asymm. Ranked keyword Range Phrase Fuzzy keyword Similarity Subset
Ranked keyword
query [4, 13, 14, 25] Yes — Yes — Possible Possible Possible —

Range query [22, 23] — Yes — Yes — Possible Possible Possible
Phrase query [20, 21] Yes — Possible — Yes Possible Possible —
Fuzzy keyword query
[3, 16, 17] Yes — Possible — Possible Yes Possible —

Wildcard query [26] — Yes — Possible — Yes Possible Possible
Similarity query
[18, 19] Yes — Possible — Possible Possible Yes —

Subset query [22] — Yes — Possible — Possible Possible Yes
This paper Yes Yes Yes Yes Yes Yes Yes Yes

to the fixed-size mappings. While searching, the tokens are
mapped to different searchable structures according to each
document.

There are some differences from the symmetric counter-
part, as shown in Figure 3. First, the searchable structures
are appended to each encrypted data such that the global
index is not available. Second, a public key is involved for
the searchable structure. However, due to the conversion, the
public key is unnecessary for the functional components.

Now we present the encryption scheme in Algorithm 5
and the search scheme in Algorithm 6 and finally present the
complete scheme in Algorithm 7.

Wenote that the process of “find s” at line 5 inAlgorithm 6
could be simply done by directly using the intermediate
results from the algorithm ASE.Search at line 1.

4.4.4. Proof of Security. As we encapsulate the basic symmet-
ric and asymmetric searchable encryptions in the global layer,
the core is semantic secure against chosen keyword attack
(CKA) [8, 9, 11]. The only thing we need is proving that the
interface is CPA secure, and other functionalities are analyzed
independently.

Theorem9. If the core symmetric or asymmetric component is
semantic secure against chosen keyword attack (CKA-secure),
then LSE is interface-CPA-secure.

Proof. We briefly prove this theorem since the proof is
straightforward. We claim that no polynomial-size distin-
guisher could distinguish (𝐶,𝐺, 𝑇, 𝑉

𝑇
) from equal-size ran-

dom strings (𝐶∗, 𝐺∗, 𝑇∗, 𝑉∗
𝑇
). As proved in [8, 11], the CKA-

security of the core component guarantees that (𝐶,𝐺, 𝑇) are
indistinguishable from (𝐶∗, 𝐺∗, 𝑇∗). For symmetric setting,
𝑉
𝑇
is the hash of 𝑇 which is indistinguishable from 𝑇

∗. For
asymmetric setting,𝑉

𝑇
is the hash of the searchable structure

𝑆 which is indistinguishable from random, say 𝑆∗. Therefore,
the hash value 𝑉

𝑇
is indistinguishable from the hash value

𝑉
∗

𝑇
.

5. Realizing Various Functionalities

In this section, we show how to realize various function-
alities based on LSE. We fist present the overview of the
searchable encryption schemes with various functionalities
and then propose two representative constructions for ranked
keyword query and range query. Finally, we briefly discuss the
methods for realizing the other functionalities.

5.1. Overview. As shown in Table 1, we present various
functionalities for searchable encryption schemes: symmetric
setting (Symm), asymmetric setting (Asym), ranked keyword
query (Ranked keyword), range query (Range), phrase query
(Phrase), fuzzy keyword query and wildcard query (Fuzzy
keyword), similarity query (Similarity), and subset query

www.manaraa.com

10 The Scientific World Journal

Input: encryption key 𝐾
𝑒
= 𝐾pub, the documents𝐷 = (𝑑

1
, . . . , 𝑑

𝑛
).

Output:
(1) 𝐶: encrypted documents 𝐶 = (𝑐

1
, . . . , 𝑐

𝑛
).

(2) 𝐺: global searchable structures 𝐺 = (𝐺
1
, . . . , 𝐺

𝑛
).

(3) 𝐿: local functional structures 𝐿 = (𝐿
1
, . . . , 𝐿

𝑛
).

Method:
(1) for each document 𝑑

𝑖
(1 ≤ 𝑖 ≤ 𝑛) in𝐷 do

(2) compute 𝑐
𝑖
← ASE⋅Enc(𝐾pub, 𝑑𝑖).

(3) scan 𝑑
𝑖
for all 𝑟 words to form a word list𝑊 = (𝑤

1
, . . . , 𝑤

𝑟
).

(4) extract 𝑎 distinct keywords𝑊󸀠 = (𝑤
1
, . . . , 𝑤

𝑎
) from𝑊.

(5) for each word 𝑤
𝑥
(1 ≤ 𝑥 ≤ 𝑎) in𝑊󸀠 do

(6) compute 𝑠
𝑖𝑥
← ASE⋅PEKS(𝐾pub, 𝑤𝑥).

(7) compute ℎ
𝑖𝑥
← 𝑓
ℎ
(𝑠
𝑖𝑥
).

(8) end for
(9) let 𝐺

𝑖
= (𝑠
𝑖1
, . . . , 𝑠

𝑖𝑎
)map to𝐻

𝑖
= (ℎ
𝑖1
, . . . , ℎ

𝑖𝑎
)map to𝑊󸀠.

(10) for each word 𝑤
𝑦
(1 ≤ 𝑦 ≤ 𝑟) in𝑊 do

(11) find the ℎ ∈ 𝐻
𝑖
that the corresponding word 𝑤

𝑦
∈ 𝑊
󸀠.

(12) set V
𝑖𝑦
= ℎ.

(13) end for
(14) let 𝑉

𝑖
= (V
𝑖1
, . . . , V

𝑖𝑟
).

(15) for each functional component FCj (1 ≤ 𝑗 ≤ 𝑒) do
(16) compute 𝐿𝑗

𝑖
← FCj⋅Build(𝑑𝑖, 𝑉𝑖).

(17) end for
(18) append 𝐿

𝑖
= (𝐿
1

𝑖
, . . . , 𝐿

𝑒

𝑖
) to 𝑐
𝑖
.

(19) end for
(20) output 𝐶 = (𝑐

1
, . . . , 𝑐

𝑛
), 𝐺 = (𝐺

1
, . . . , 𝐺

𝑛
), 𝐿 = (𝐿

1
, . . . , 𝐿

𝑛
).

Algorithm 5: Encryption (asymmetric): Enc(𝐾
𝑒
, 𝐷).

Input:
(1) 𝐾pub: the user’s public key.
(2) 𝐶: encrypted documents.
(3) 𝐺: global searchable structures 𝐺 = (𝐺

1
, . . . , 𝐺

𝑛
).

(4) 𝐿: local functional structures 𝐿 = (𝐿
1
, . . . , 𝐿

𝑛
).

(5) 𝑇: the search tokens 𝑇 = (𝑡
1
, . . . , 𝑡

𝑜
).

Output: matched documents 𝐶󸀠 = (𝑐
1
, . . . , 𝑐

𝑚
).

Method:
(1) compute 𝐶󸀠 ←ASE⋅Search(𝐾pub, 𝐶, 𝐺, 𝑇). Let 𝐶

󸀠
= (𝑐
1
, . . . , 𝑐

𝑥
).

(2) for each 𝑐
𝑖
∈ 𝐶
󸀠 and the functional structure 𝐿

𝑖
(1 ≤ 𝑖 ≤ 𝑥) do

(3) let 𝐺
𝑖
= (𝑠
𝑖1
, . . . , 𝑠

𝑖𝑎
) denote the searchable encryptions of 𝑐

𝑖
,

where 𝑎 is the number of keywords in 𝑐
𝑖
.

(4) for each 𝑡
𝑦
(1 ≤ 𝑦 ≤ 𝑜) in 𝑇 do

(5) find 𝑠 ∈ 𝐺
𝑖
where ASE⋅Test(𝐾pub, 𝑠, 𝑡𝑦) == 𝑦𝑒𝑠.

(6) compute V
𝑖𝑦
← 𝑓
ℎ
(𝑠).

(7) end for
(8) let 𝑉

𝑖
= (V
𝑖1
, . . . , V

𝑖𝑜
), 𝐿
𝑖
= (𝐿
1

𝑖
, . . . , 𝐿

𝑒

𝑖
).

(9) end for
(10) for each functional component FCj (1 ≤ 𝑗 ≤ 𝑒) do
(11) let 𝐶󸀠 = (𝑐

1
, . . . , 𝑐

𝑥
), then the corresponding 𝐿󸀠 = (𝐿

1
, . . . , 𝐿

𝑥
)

and 𝑉
𝑇
= (𝑉
1
, . . . , 𝑉

𝑥
). Let 𝐿𝑗 = (𝐿𝑗

1
, . . . , 𝐿

𝑗

𝑥
).

(12) compute 𝐶󸀠 ← FCj⋅Filter(𝐶
󸀠
, 𝐿
𝑗
, 𝑉
𝑇
).

(13) end for

Algorithm 6: Search (asymmetric): Search(𝐾pub, 𝐶, 𝐺, 𝐿, 𝑇).

www.manaraa.com

The Scientific World Journal 11

Gen(1𝑘): compute 𝐾 = (𝐾pub, 𝐾priv) ← ASE⋅Gen(1𝑘), and output 𝐾.
Enc(𝐾

𝑒
, 𝐷): described in Algorithm 5.

Token(𝐾priv,𝑊):
(1) for each keyword 𝑤

𝑘
(1 ≤ 𝑘 ≤ 𝑜) in𝑊 do

(2) compute 𝑡
𝑘
← ASE⋅Token(𝐾priv, 𝑤𝑘).

(3) end for
(4) output 𝑇 = (𝑡

1
, . . . , 𝑡

𝑜
).

Search(𝐾pub, 𝐶, 𝐺, 𝐿, 𝑇): described in Algorithm 6.
Dec(𝐾priv, 𝑐): compute 𝑑 ← ASE⋅Dec(𝐾priv, 𝑐), and output 𝑑.

Algorithm 7: LSE scheme: asymmetric part.

(Subset). “Yes”means that the corresponding scheme directly
supports such functionality. “Possible” means that the under-
lying data structure is compatible, and such functionality
could be realized through minor modification of the original
scheme. “—” means that realizing such functionality is quite
challenging or the cost is relatively high.

5.2. Ranked Keyword Query. Ranked keyword query refers
to a functionality that all matched documents are sorted
according to some criteria, and only the top-𝑘 relevant
documentswill be returned to the user.The SQLquery format
is “ORDERED BY “keyword’.” In [14], the authors introduced
the computation for the relevance scores and proposed a
comparing method over the encrypted scores based on order
preserving symmetric encryption (OPSE) [27]. By using the
same cryptographic primitive, the functional structure could
record the encrypted relevance scores and setup an indexwith
(token, score) pairs in order to obtain the score with 𝑂(1)
computation complexity.

5.2.1. Preliminaries. Order-preserving encryption (OPE)
aims to encrypt the data in such a way that comparisons
over the ciphertexts are possible. For 𝐴, 𝐵 ⊆ N, a function
𝑓 : 𝐴 → 𝐵 is order-preserving if for all 𝑖, 𝑗 ∈ 𝐴, 𝑓(𝑖) < 𝑓(𝑗)
if and only if 𝑖 < 𝑗. We say an encryption scheme OPE =
(Enc, Dec) is order-preserving if Enc(𝐾, ⋅) is an order-
preserving function. In [28], Agrawal et al. proposed a
representative OPE scheme that all numeric numbers are
uniformly distributed. In [27], Boldyreva et al. introduced
an order-preserving symmetric encryption scheme and
proposed the security model. The improved definitions are
introduced in [29]. Informally speaking, OPE is secure if the
oracle access to OPE.Enc is indistinguishable from accessing
to a random order-preserving function (ROPF).The security
model is described as Pseudorandom Order-Preserving
Function against Chosen Ciphertext Attack (POPF-CCA)
[27].

A sparse look-up table is often managed by indirect
addressing technique. Indirect addressing is also called FKS
dictionary [30], which is used in symmetric searchable
encryption scheme [8]. The addressing format is address,
value, where the address is a virtual address that could locate
the value field. Given the address, the algorithm will return

the associated value in constant look-up time and return
otherwise.

5.2.2. Construction. We build a sparse look-up table 𝐴 that
records the pair (keyword, relevance score) with all data
encrypted. When queried, the server searches the relevance
scores of all documents and finds the top-𝑘 relevant docu-
ments. Note that, in order to security use OPE scheme to
encrypt relevance scores, a preprocessing is necessary.

We build an OPE table to preprocess all plaintexts and
store the encrypted relevance scores as follows. Given a
document collection 𝐷 = (𝑑

1
, . . . , 𝑑

𝑛
). For each document

𝑑
𝑘
(1 ≤ 𝑘 ≤ 𝑛), scan it for 𝑜𝑘 keywords. Compute the

relevance score (based on word frequency) 𝑠𝑘
𝑖
(1 ≤ 𝑖 ≤ 𝑜

𝑘
) for

each keyword𝑤𝑘
𝑖
∈ 𝑊 in 𝑑

𝑘
, and record a 𝑜𝑘×3matrix for 𝑑

𝑘

with the 𝑖th line recording 𝑅𝑘
𝑖
= (𝑤
𝑘

𝑖
, 𝑠
𝑘

𝑖
, 𝑝
𝑘

𝑖
), where 𝑝𝑘

𝑖
is the

position where the first 𝑤𝑘
𝑖
occurs. For all documents, setup

the OPE with 𝑁 = 𝑜
1
+ 𝑜
2
+ ⋅ ⋅ ⋅ + 𝑜

𝑛 numbers (𝑠
1
, . . . , 𝑠

𝑁
).

For each number 𝑠
𝑗
(1 ≤ 𝑗 ≤ 𝑁), the encryption is 𝑒

𝑗
.

Transform the previous matrix to an OPE table with the 𝑖th
line recording 𝑅𝑘

𝑖
= (𝑤
𝑘

𝑖
, 𝑒
𝑘

𝑖
, 𝑝
𝑘

𝑖
) where 𝑒𝑘

𝑖
is the encryption of

𝑠
𝑘

𝑖
.
For a document, it has at most |𝑑|/2 + 1 keywords

(note that each keyword is followed by a separator such as
a blank). The look-up table is padded to |𝑑|/2 + 1 entries
in order to achieve semantic security. Now we present the
concrete construction for ranked keyword query component
in Algorithm 8.

5.2.3. Proof of Security. Informally speaking, the functional
component must guarantee that given two documents’ col-
lection𝐷

1
, 𝐷
2
with equal size and |𝐷

1
| = |𝐷

2
| then the chal-

lenger flips a coin 𝑏 and encrypts 𝐷
𝑏
using LSE (the order of

the ciphertexts are randomized). The adversary could query
a keyword and receive the ordered document collection but
he could not distinguishwhich one the challenger selected. By
combining the securitymodels defined in [8, 27], we formally
define the notion of non-adaptive chosen ranked keyword
attack (CRKA) as follows.

Definition 10 (semantic security against nonadaptive chosen
ranked keyword attack, CRKA-secure). Let Σ be the func-
tional component for ranked keyword query. Let 𝑘 ∈ N be

www.manaraa.com

12 The Scientific World Journal

Build(𝑑, 𝑉
𝑑
):

(1) input a document 𝑑 and the mapping 𝑉
𝑑
= (V
1
, . . . , V

𝑟
) for 𝑟 words.

(2) let the entries of 𝑑 in OPE table be ((𝑤
1
, 𝑒
1
, 𝑝
1
), . . . , (𝑤

𝑜
, 𝑒
𝑜
, 𝑝
𝑜
)).

(3) for each 𝑖 ∈ [1, 𝑜], build index 𝐴[V
𝑝𝑖
] = 𝑒
𝑖
.

(4) padding the remaining |𝑑|/2 + 1 − 𝑜 entries with random strings.
(5) output a local functional structure 𝐿

𝑑
= 𝐴.

Filter(𝐶, 𝐿, 𝑉
𝑇
):

(1) input 𝑛 ciphertexts 𝐶 = (𝑐
1
, . . . , 𝑐

𝑛
), the corresponding functional structures

𝐿 = (𝐿
1
, . . . , 𝐿

𝑛
) and the mappings of the queried keywords

𝑉
𝑇
= (𝑉
1
, . . . , 𝑉

𝑛
) = (V

1
, . . . , V

𝑛
) (single keyword).

(2) for all 𝑛 functional structures, compute 𝑟
1
= 𝐿
1
[V
1
], . . . , 𝑟

𝑛
= 𝐿
𝑛
[V
𝑛
]

and select the top 𝑘 results 𝑐
1
, . . . , 𝑐

𝑘
corresponding to 𝑟

1
, . . . , 𝑟

𝑘
.

(3) output 𝐶󸀠 = (𝑐
1
, . . . , 𝑐

𝑘
).

Algorithm 8: Ranked keyword query component.

the security parameter.We consider the following probabilis-
tic experiments, whereA is an adversary andS is a simulator.

Real
Σ,A(𝑘): the challenger runs Gen(1𝑘) to generate

the key 𝐾. The adversary A generates a document
collection𝐷 = (𝑑

1
, . . . , 𝑑

𝑛
) (the size of each document

is fixed) and receives the encrypted documents 𝐶 =

(𝑐
1
, . . . , 𝑐

𝑛
) and functional structures 𝐿 = (𝐿

1
, . . . , 𝐿

𝑛
)

with random order from the challenger.A is allowed
to query a keyword 𝑤, where 𝑤 ∈ 𝑑

1
, . . . , 𝑤 ∈ 𝑑

𝑛
and

receives a mapping V from the challenger. Finally, A
returns a bit 𝑏 that is output by the experiment.
Sim
Σ,A,S(𝑘): given the number of documents 𝑛, the

size of each document |𝑑|, and the size of themapping
|V|, S generates 𝐶∗, 𝐿∗, and V∗ and then sends the
results to A. Finally, A returns a bit 𝑏 that is output
by the experiment.

We say that the functional component is CRKA-secure, if
for all PPT adversariesA, there exists a PPT simulatorS such
that

󵄨
󵄨
󵄨
󵄨
Pr [Real

Σ,A (𝑘) = 1] − Pr [Sim
Σ,A,S (𝑘) = 1]

󵄨
󵄨
󵄨
󵄨

≤ negl (𝑘) ,
(6)

where the probabilities are over the coins of Gen.

Theorem11. If LSE is interface-CPA-secure and the underlying
OPE is POPF-CCA secure, then the ranked keyword query
component is CRKA-secure.

Proof. The simulator S generates 𝐶∗, 𝐿∗, and V∗ as follows.
As to 𝐶∗, S generates 𝑛 random strings 𝑐∗

1
, . . . , 𝑐

∗

𝑛
of size |𝑑|.

As to𝐿∗, let𝑚 = |𝑑|/2+1;S generates𝑚 random strings𝑉∗ =
V∗
1
, . . . , V∗

𝑚
with each has size |V|.S generates an𝑚× 𝑛matrix

𝐸
𝑚×𝑛

= (𝑒
∗

𝑖𝑗
), where each element 𝑒∗

𝑖𝑗
is a random number.

Then for each document, S generates an index 𝐴∗
𝑗
[V∗
𝑖
] = 𝑒
∗

𝑖𝑗

(1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛). As to V∗, S randomly selects V∗ =
V∗
𝑖
∈ 𝑉
∗.

We claim that no polynomial-size distinguisher could
distinguish (𝐶, 𝐿, V) from (𝐶∗, 𝐿∗, V∗). Since the encryption

key 𝐾 is kept secret from the adversary, the interface-CPA-
security directly guarantees that 𝐶∗ is indistinguishable from
𝐶. It also guarantees that V∗ is indistinguishable from V. Upon
receiving V = V

𝑖
∈ 𝑉 or V∗ = V∗

𝑖
∈ 𝑉
∗, the adversaryA could

invoke Filter(𝐶, 𝐿, V) or Filter(𝐶∗, 𝐿∗, V∗) to obtain (𝑟
1
=

𝐿
1
[V
𝑖
] = 𝑒

1
, . . . , 𝑟

𝑛
= 𝐿
𝑛
[V
𝑖
] = 𝑒

𝑛
) or (𝑟∗

1
= 𝐿
∗

1
[V∗
𝑖
] =

𝑒
∗

1
, . . . , 𝑟

∗

𝑛
= 𝐿
∗

𝑛
[V∗
𝑖
] = 𝑒

∗

𝑛
). POPF-CCA security guarantees

that the set (𝑟
1
, . . . , 𝑟

𝑛
) is indistinguishable from (𝑟

∗

1
, . . . , 𝑟

∗

𝑛
);

that is, the adversary is unable to distinguish the result of
OPE from the result of a random order-preserving function.
Therefore, 𝐿 is indistinguishable from 𝐿

∗.

5.3. Range Query. Range query refers to a functionality that
the server could test if the submitted keyword (integer) is
within a range.The SQLquery format is “WHERE ‘𝑥 operator
𝑦’.” For example, the user submits an integer 𝑤, and the
server could return the documents where the corresponding
searchable fields 𝑎 satisfying 𝑎 > 𝑤.

Although OPE could be applied here to support range
query (similar to ranked keyword query), we propose another
solution to demonstrate that how to apply the methods used
in asymmetric setting to LSE. In [2], the authors introduced
a construction based on bilinear map (asymmetric setting),
which is not compatible with symmetric setting. However,
the idea of transforming the comparison into a predicate (e.g.,
𝑃
𝑎
(𝑤) = 1 if 𝑎 > 𝑤 where 𝑃 is a predicate) could be used, and

the functional structure could record all possible predicates
and provide predicate test using a bloom filter.

5.3.1. Preliminaries. A bloom filter [31] is a space-efficient
probabilistic data structure that is used to test whether an
element 𝑠 is a member of a set 𝑆 = (𝑠

1
, . . . , 𝑠

𝑛
). The set 𝑆 is

coded as an array 𝐵 of 𝑚 bits. Initially, all array bits are set
to 0. The filter uses 𝑟 independent hash functions ℎ

1
, . . . , ℎ

𝑟

where each ℎ
𝑖
: {0, 1}

∗
→ [1,𝑚] for 1 ≤ 𝑖 ≤ 𝑟. For each

element 𝑠
𝑘
∈ 𝑆 where 1 ≤ 𝑘 ≤ 𝑛, set the bits at positions

ℎ
1
(𝑠
𝑘
), . . . , ℎ

𝑟
(𝑠
𝑘
) to 1. Note that, a location could be set to 1

multiple times. To determine if 𝑠 ∈ 𝑆, just check whether the
positions ℎ

1
(𝑠), . . . , ℎ

𝑟
(𝑠) in𝐵 are all 1. If any bit is 0, then 𝑠 ∉ 𝑆.

Otherwise, we say 𝑠 ∈ 𝑆with high probability (the probability
could be adjusted by parameters until acceptable).

www.manaraa.com

The Scientific World Journal 13

Build(𝑑, 𝑉
𝑑
):

(1) input a range document 𝑑 = (> 𝑎
1
, ≥ 𝑎
1
, . . ., > 𝑎

𝑖−1
, ≥ 𝑎
𝑖−1
, ≥ 𝑎
𝑖
, = 𝑎
𝑖
, ≤ 𝑎
𝑖
, < 𝑎
𝑖+1
, ≤ 𝑎
𝑖+1
, . . ., < 𝑎

𝑁
, ≤ 𝑎
𝑁
)

and the mapping 𝑉
𝑑
= (V
1
, . . . , V

2𝑁+1
). Here 𝑑 is the transformed form for the label 𝑎 = 𝑎

𝑖
.

(2) initialize a bloom filter 𝐵 with all bits set to 0.
(3) for (𝑘 = 1; 𝑘 ≤ 2𝑁 + 1; 𝑘 + +) do
(4) compute 𝑟 codewords 𝑦

1
= ℎ
1
(𝑑 ‖ V

𝑘
), . . . , 𝑦

𝑟
= ℎ
𝑟
(𝑑 ‖ V

𝑘
).

(5) insert the codewords 𝑦
1
, . . . , 𝑦

𝑟
into the bloom filter 𝐵.

(6) end for
(7) output a local functional structure 𝐿

𝑑
= 𝐵.

Filter(𝐶, 𝐿, 𝑉
𝑇
):

(1) input 𝑛 ciphertexts 𝐶 = (𝑐
1
, . . . , 𝑐

𝑛
), the corresponding functional structures 𝐿 = (𝐿

1
, . . . , 𝐿

𝑛
),

the mappings of the queried keywords 𝑉
𝑇
= (𝑉
1
, . . . , 𝑉

𝑛
) = (V

1
, . . . , V

𝑛
) (single keyword),

where V
𝑖
(1 ≤ 𝑖 ≤ 𝑛) is the mapping of “> 𝑤”.

(2) for (𝑖 = 1; 𝑖 ≤ 𝑛; 𝑖 + +) do
(3) compute 𝑟 codewords 𝑦

1
= ℎ
1
(𝑑 ‖ V

𝑖
), . . . , 𝑦

𝑟
= ℎ
𝑟
(𝑑 ‖ V

𝑖
).

(4) if all 𝑟 locations 𝑦
1
, . . . , 𝑦

𝑟
in bloom filter 𝐵

𝑖
= 𝐿
𝑖
are 1, then add 𝑐

𝑖
to 𝐶󸀠.

(5) end for
(6) output 𝐶󸀠.

Algorithm 9: Range query component.

In addition, we write 𝑑 to denote the identifier of a
document 𝑑 such as the cryptographic hash of the pathname,
and write 𝑥 > (𝑦

1
, . . . , 𝑦

𝑛
) to denote 𝑥 > 𝑦

1
, . . . , 𝑥 > 𝑦

𝑛
for

simplicity.

5.3.2. Construction. For range query, the document 𝑑 is
labeled by some numbers. Here we only consider a single
label 𝑎. Therefore, the aim of range query is to enable the
user to submit a number 𝑤 to search for the documents that
satisfying the SQL-like query such as “WHERE “𝑎 > 𝑤””. We
consider the five basic range query operators “>, ≥, <, ≤, =.”
The other operators such as “∈” could be naturally derived
from the basic operators.

We consider the whole range to be a sequence of 𝑁
discrete numbers 𝐴 = (𝑎

1
, . . . , 𝑎

𝑁
), where 𝑎

1
< 𝑎
2
< ⋅ ⋅ ⋅ < 𝑎

𝑁
.

Then we set five shared virtual documents 𝑑󸀠
1
= (> 𝑎

1
, >

𝑎
2
, . . . , > 𝑎

𝑁−1
), 𝑑󸀠
2
= (≥ 𝑎

1
, ≥ 𝑎
2
, . . . , ≥ 𝑎

𝑁
), 𝑑󸀠
3
= (< 𝑎

2
, <

𝑎
3
, . . . , < 𝑎

𝑁
), 𝑑󸀠
4
= (≤ 𝑎

1
, ≤ 𝑎
2
, . . . , ≤ 𝑎

𝑁
), and 𝑑󸀠

5
= (= 𝑎

1
, =

𝑎
2
, . . . , = 𝑎

𝑁
) for all user’s documents. The virtual document

could be encrypted by LSE’ core as a normal document.
Therefore, for any keyword such as “> 𝑎

𝑖
”where 1 ≤ 𝑖 ≤ 𝑁−1,

there always exists a mapping V
𝑖
.

Based on the notion of virtual document, a label 𝑎 ∈ 𝐴 for
a user’s document satisfying 𝑎

𝑖−1
< 𝑎 < 𝑎

𝑖+1
(or 𝑎 = 𝑎

𝑖
) could

be represented as 2𝑁+1 keywords 𝑑 = (> 𝑎
1
, ≥ 𝑎
1
, . . . , > 𝑎

𝑖−1
,

≥ 𝑎
𝑖−1
, ≥ 𝑎
𝑖
, = 𝑎
𝑖
, ≤ 𝑎
𝑖
, < 𝑎
𝑖+1
, ≤ 𝑎
𝑖+1
, . . . , < 𝑎

𝑁
, ≤ 𝑎
𝑁
), and

these keywords are stored in a bloom filter 𝐵. Suppose the
user queries a keyword “> 𝑤,” where 𝑎

1
< 𝑤 < 𝑎

𝑁
; then the

query is transmitted to the bloom filter to test if “> 𝑤” ∈ 𝐵.
For example (we only consider the operator “>” here for

simplicity), suppose we have two documents 𝑐
1
, 𝑐
2
labeled

5, 10, respectively.Then the transformed sets are 𝐵
1
= (> 1, >

2, . . . , > 4) and 𝐵
2
= (> 1, > 2, . . . , > 9). If the user sub-

mits >7, then only 𝐵
2
matches the query, which is the same

result as direct comparisons since 5 ̸> 7 and 10 > 7, and

then 𝑐
2
is returned. Similarly, the query “>3” will match both

documents, and 𝑐
1
, 𝑐
2
are returned.

Now we construct the secure version of the aforemen-
tioned scheme. Let 𝐴 = (𝑎

1
, . . . , 𝑎

𝑁
) denote the domain of

the label, and setup the bloom filter with 𝑟 independent hash
functions ℎ

1
, . . . , ℎ

𝑟
. The identifier 𝑑 of a document is always

bound to the document 𝑑 or the ciphertext 𝑐. The concrete
construction is presented in Algorithm 9.

The size of the bloom filter could be dramatically reduced
if the domain is bucketized [32] for example, bucketizing the
subrange [10, 20) as tag 10 and the subrange [20, 30) as tag
20. Then a query for “>13” could be mapped to the closest
query “>10.” In other words, the whole domain is divided
to multiple subranges that the queried range is transformed
to the approximate range. The optimization of the idea of
bucketizing the range is introduced in [33]. In such way, the
number of the data stored in the bloom filter will become
smaller. However, this will induce inaccuracy for the query
result.

5.3.3. Proof of Security. For simplicity without loss of gener-
ality, we only consider the operator “>” here, and the other
operators are the same. Informally speaking, the functional
component must guarantee that the adversary is unable to
guess the queried range as well as the range in the ciphertext,
and the basic game works as follows. Given two documents
𝑑
1
, 𝑑
2
that are labeled with two numbers 𝑎

1
, 𝑎
2
, respectively,

the challenger flips a coin 𝑏 and encrypts (𝑑
𝑏
, 𝑎
𝑏
). The

adversary is allowed to adaptively query 𝑝 keywords 𝑊 =

(𝑤
1
, . . . , 𝑤

𝑝
), where each 𝑤

𝑖
∈ 𝑊 that (𝑎

1
, 𝑎
2
) > 𝑤
𝑖
. Note that

querying 𝑤
𝑖
that 𝑎

1
> 𝑤
𝑖
, 𝑎
2

̸> 𝑤
𝑖
is not allowed since the

document is immediately distinguished (only the document
with 𝑎

1
> 𝑤
𝑖
is matched and returned). We propose the

notion of chosen range attack (CRA) and formally define the
security model for semantic security as follows.

www.manaraa.com

14 The Scientific World Journal

Definition 12 (semantic security against chosen range attack,
CRA-secure). Let Σ be the functional component for ranked
keyword query. Let 𝑘 ∈ N be the security parameter. We
consider the following probabilistic experiments, whereA is
an adversary and S is a simulator.

Real
Σ,A(𝑘): the challenger runs Gen(1𝑘) to generate

the key 𝐾. The adversary A generates a docu-
ment 𝑑 and the labeled number 𝑎 and receives the
encrypted document 𝑐 and the functional structure
𝐿. A is allowed to adaptively query 𝑝 keywords
𝑊 = (> 𝑤

1
, . . . , >𝑤

𝑝
). For each query “> 𝑤

𝑖
,” A re-

ceives a mapping V
𝑖
from the challenger. Finally, A

returns a bit 𝑏 that is output by the experiment.

Sim
Σ,A,S(𝑘): given the document size |𝑑|, the cardi-

nality of the range𝑁, and the size of the mapping |V|,
S generates 𝑐∗, 𝐿∗, and 𝑉∗ = (V∗

1
, . . . , V∗

𝑝
), and then

sends the results to A. Finally, A returns a bit 𝑏 that
is output by the experiment.

We say that the functional component is CRA-secure, if
for all PPT adversariesA, there exists a PPT simulatorS such
that

󵄨
󵄨
󵄨
󵄨
Pr [Real

Σ,A (𝑘) = 1] − Pr [Sim
Σ,A,S (𝑘) = 1]

󵄨
󵄨
󵄨
󵄨

≤ negl (𝑘) ,
(7)

where the probabilities are over the coins of Gen.

Theorem 13. If LSE is interface-CPA-secure, then the ranked
keyword query component is CRA-secure.

Proof. ThesimulatorS generates 𝑐∗, 𝐿∗ and𝑉∗ = (V∗
1
, . . . , V∗

𝑝
)

as follows. As to 𝑐∗,S generates a random string of size |𝑑|. As
to 𝐿∗,S generates a random string 𝑑

∗

and 2𝑁+1 distinct and
random strings 𝑇 = (𝑡

1
, . . . , 𝑡

2𝑁+1
). For each 𝑡

𝑖
∈ 𝑇, S com-

putes 𝑟 codewords 𝑦∗
1
= ℎ
1
(𝑑

∗

||𝑡
𝑖
), . . . , 𝑦

∗

𝑟
= ℎ
𝑟
(𝑑

∗

||𝑡
𝑖
) and

inserts the codewords 𝑦∗
1
, . . . , 𝑦

∗

𝑟
into a bloom filter 𝐵∗. Let

𝐿
∗
= 𝐵
∗. As to𝑉∗, for each V∗

𝑖
∈ 𝑉
∗,S randomly selects a dis-

tinct 𝑡
𝑗
∈ 𝑇maps to V∗

𝑖
, such that V∗

𝑖
= 𝑡
𝑗
. Note that, if V∗

𝑥
= V∗
𝑦

for some locations 1 ≤ 𝑥, 𝑦 ≤ 𝑝, the mapping is the same.
We claim that no polynomial-size distinguisher could

distinguish (𝑐, 𝐿, 𝑉) from (𝑐∗, 𝐿∗, 𝑉∗). Since the encryption
key 𝐾 is kept secret from the adversary, the interface-CPA-
security directly guarantees that 𝑐∗ is indistinguishable from
𝑐. It also guarantees that each V

𝑖
∈ 𝑉 is indistinguishable from

the random string V∗
𝑖
such that 𝑉 is indistinguishable from

𝑉
∗. Therefore, the locations (𝑦

1
, . . . , 𝑦

𝑟
) of V
𝑖
in bloom filter

𝐵 is indistinguishable from the locations (𝑦∗
1
, . . . , 𝑦

∗

𝑟
) of V∗

𝑖

in bloom filter 𝐵∗. Therefore, 𝑟 ⋅ (2𝑁 + 1) locations in 𝐵 are
indistinguishable from 𝑟 ⋅ (2𝑁 + 1) locations in 𝐵∗. Thus, 𝐿 is
indistinguishable from 𝐿

∗.

5.4. Other Functionalities. Due to space limitation, we only
discuss the above two representative functional components.

We briefly introduce how to realize some other functionalities
based on LSE as follows.

Phrase Query. It refers to a query with consecutive and
ordered multiple keywords. For example, searching with
phrase “operating system” requires that not only each key-
word “operating” and “system” must exist in each returned
document, but also the order that “operating” is followed by
“system”must also be satisfied. In [21], the authors introduced
a solution based on Nextword Index [34]. It allows the
index to record the keyword position for each document
and enables the user to query the consecutive keywords
based on binary search over all positions. However, it has
𝑂(log 𝑛) computation complexity for each document. Based
on LSE, this functionality could be realized using bloom filter
(as demonstrated in range query scheme) which recording
biword or more words based on Partial Phrase Indexes [35].
As a result, the scheme coude achieve approximately 𝑂(1)
computation complexity (note that, the index in the global
layer could reduce a large number of results for multiple
keywords).

Fuzzy Keyword Search. It refers to a functionality that the
user submit a fragment of a keyword (or a keyword that
does not exist in all documents) and the server could search
for the documents with all possible keywords that are closed
to the fragment. In [3], the authors introduced a wildcard-
based construction that could handle fuzzy keyword search
with arbitrary edit distance [36]. By using the same method,
the functional structure could realize this functionality by
recording and indexing the fuzzy set of all mappings instead
of keywords.

Similarity Query. It refers to a functionality that the server
could return to the user some documents containing key-
words which are similar to the queried keyword. In both
[18, 19], the authors realized this functionality based on
fuzzy set.Therefore, although different methods are used, the
construction of the fundamental component is similar to the
construction of fuzzy keyword search scheme.

Subset Query. It refers to a functionality that the server
could test if the queried message is a subset of the values in
the searchable fields. For example, let 𝑆 be a set that con-
tains multiple e-mail addresses. If the user search for some
encrypted mails containing Alice’s e-mail 𝑎, then the server
must have the ability to test if 𝑎 ∈ 𝑆 without knowing any
other information. A solution was also introduced in [2].
Similar to the range query scheme, this test could also be
viewed as a predicate and therefore the solution is the same.

5.5. Performance Analysis. The algorithms of ranked key-
word query component and range query component are
coded in C++ programming language and the server is
a Pentium Dual-Core E5300 PC with 2.6GHz CPU. Each
document is fixed to 10 KB with random words chosen from
a dictionary, and the query is also some random keywords
(random numbers). For bloom filter used in range query

www.manaraa.com

The Scientific World Journal 15

0.5 1 1.5 2
0

100

200

300

400

500

600

700

800

900

Number of documents (million)

Ru
nn

in
g

tim
e (

m
ill

ise
co

nd
s)

Ranked keyword query
Range query

Figure 4: Time costs of the filter algorithms (single server, single
query).

User

Documents

Rank
Range

Core

Rank Range

Range

Core

Searchable and functional structures

Tokens

Figure 5: Deploying functional components to multiple servers.

component, the number of hash functions is set to 8.The time
costs of the filter algorithms are shown in Figure 4.

Let 𝑛 denote the number of documents. For ranked key-
word query, the main operations are retrieving the relevance
scores from the secure table managed by indirect addressing
technique (𝑂(𝑛) search complexity) and selecting the top-
𝑘 scores (𝑂(𝑛) computation complexity). For range query,
the main operation is computing 8 hash values (𝑂(𝑛) com-
putation complexity). Note that the current document will
be passed if any position in bloom filter is 0. Therefore, not
all eight hash functions are executed all the time. The figure
demonstrates that, even for a single server, the algorithms are
both efficient. Note that, since the functional components are
loosely coupled with each other, they could be deployed to
different servers. For example, two core components (Core),
two ranked keyword query components (Rank), and three
range query components (Range) could be executed as a data-
flow boxes as shown in Figure 5. Each box could be deployed
to any server. The detailed methods are out of scope of this
paper and we will not discuss this further.

6. Conclusions

Layered searchable encryption scheme provides a new way
of thinking the relationship among the searchable structure,
functionality and security. It separates the functionalities
apart from the core searchable structure without loss of
security. Therefore, the loose coupling property provides
compatibility for symmetric and asymmetric settings and
it also provides flexibility for adding or deleting various
functionalities. Furthermore, following the popular boxes
and arrows paradigm, the loose coupling property makes the
scheme more suitable for distributed and parallel computing
environment.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work is supported by the Science and Technology
Department of Sichuan Province (Grant no. 2012GZ0088 and
no. 2012FZ0064).

References

[1] H. Takabi, J. B. D. Joshi, and G.-J. Ahn, “Security and privacy
challenges in cloud computing environments,” IEEE Security
and Privacy, vol. 8, no. 6, pp. 24–31, 2010.

[2] D. Boneh and B. Waters, “Conjunctive, subset, and range que-
ries on encrypted data,” inTheory of Cryptography, pp. 535–554,
Springer, 2007.

[3] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, “Fuzzy
keyword search over encrypted data in cloud computing,” in
Proceeding of the Fuzzy Keyword Search over Encrypted Data in
Cloud Computing (IEEE INFOCOM ’10), Institute of Electrical
and Electronics Engineers, March 2010.

[4] A. Swaminathan, Y. Mao, G.-M. Su et al., “Confidentiality-pre-
serving rank-ordered search,” in Proceedings of the ACMWork-
shop on Storage Security and Survivability (StorageSS ’07), pp.
7–12, Association for Computing Machinery, October 2007.

[5] D. J. Abadi, D. Carney, U. Çetintemel et al., “Aurora: a new
model and architecture for data stream management,” VLDB
Journal, vol. 12, no. 2, pp. 120–139, 2003.

[6] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques
for searches on encrypted data,” in Proceedings of the IEEE
Symposium on Security and Privacy, pp. 44–55, May 2000.

[7] E. J. Goh, “Secure indexes,” Tech. Rep., IACR ePrint Cryptogra-
phy Archive, 2003.

[8] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Search-
able symmetric encryption: improved definitions and efficient
constructions,” in Proceedings of the 13th ACM Conference on
Computer and Communications Security (CCS ’06), pp. 79–88,
November 2006.

[9] M.Chase and S. Kamara, “Structured encryption and controlled
disclosure,” in Proceedings of the 16th International Conference
on the Theory and Application of Cryptology and Information
Security (ASIACRYPT ’10), pp. 577–594, Springer, 2010.

www.manaraa.com

16 The Scientific World Journal

[10] S. Kamara, C. Papamanthou, and T. Roeder, “Cs2: a searchable
cryptographic cloud storage system,” Tech. Rep. MSR-TR-2011-
58, Microsoft Research.

[11] D. Boneh,G.D.Crescenzo, R.Ostrovsky, andG. Persiano, “Pub-
lic key encryption with keyword search,” in Proceedings of the
International Conference on theTheory andApplications of Cryp-
tographic Techniques (EUROCRYPT ’04), pp. 506–522, Springer,
2004.

[12] M. Abdalla, M. Bellare, D. Catalano et al., “Searchable encryp-
tion revisited: consistency properties, relation to anonymous
IBE, and extensions,” Journal of Cryptology, vol. 21, no. 3, pp.
350–391, 2008.

[13] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserv-
ing multi-keyword ranked search over encrypted cloud data,”
inProceedings of the IEEE International Conference onComputer
Communications (IEEE INFOCOM ’11), pp. 829–837, Institute of
Electrical and Electronics Engineers, 2011.

[14] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, “Secure ranked
keyword search over encrypted cloud data,” inProceedings of the
30th IEEE International Conference on Distributed Computing
Systems (ICDCS ’10), pp. 253–262, June 2010.

[15] P. Golle, J. Staddon, andB.Waters, “Secure conjunctive keyword
search over encrypted data,” in Proceedings of the 2nd Interna-
tional Conference (ACNS ’04), pp. 31–45, Springer, 2004.

[16] C. Bosch, R. Brinkman, P. Hartel, and W. Jonker, “Conjunctive
wildcard search over encrypted data,” in Proceedings of the
8th VLDB Workshop on Secure Data Management, pp. 114–127,
Springer, 2011.

[17] J. Bringer and H. Chabanne, “Embedding edit distance to allow
private keyword search in cloud computing,” in Proceedings
of the 8th FTRA International Conference on Secure and Trust
Computing, Data Management, and Application, pp. 105–113,
Springer, 2011.

[18] W. Cong, R. Kui, Y. Shucheng, and K. M. R. Urs, “Achieving
usable and privacy-assured similarity search over outsourced
cloud data,” in Proceedings of the IEEE Conference on Computer
Communications (INFOCOM ’12), pp. 451–459, 2012.

[19] M. Kuzu, M. S. Islam, andM. Kantarcioglu, “Efficient similarity
search over encrypted data,” in Proceedings of the IEEE 28th
International Conference on Data Engineering (ICDE ’12), pp.
1156–1167, 2012.

[20] S. Zittrower and C. C. Zou, “Encrypted phrase searching in the
cloud,” in Proceedings of the IEEE Conference and Exhibition
Global Telecommunications Conference (GLOBECOM ’12), pp.
764–770, 2012.

[21] Y. Tang, D. Gu, N. Ding, and H. Lu, “Phrase search over
encrypted data with symmetric encryption scheme,” in Pro-
ceedings of the 32nd International Conference on Distributed
Computing Systems Workshops (ICDCSW ’12), pp. 471–480,
2012.

[22] D. Boneh, E. Kushilevitz, R. Ostrovsky, and W. E. Skeith III,
“Public key encryption that allows pir queries,” in Proceeding of
the 27th Annual International Cryptology Conference (CRYPTO
’07), pp. 50–67, Springer, 2007.

[23] E. Shi, J. Bethencourt, T.-H. H. Chan, D. Song, and A. Perrig,
“Multi-dimensional range query over encrypted data,” in Pro-
ceedings of the IEEE Symposium on Security and Privacy (SP ’07),
pp. 350–364, May 2007.

[24] R. Rivest,The Md5 Message-Digest Algorithm, Internet Request
For Comments, 1992.

[25] C. Wang, N. Cao, K. Ren, and W. Lou, “Enabling secure and
efficient ranked keyword search over outsourced cloud data,”

IEEE Transactions on Parallel and Distributed Systems, vol. 23,
no. 8, pp. 1467–1479, 2012.

[26] S. Sedghi, P. Van Liesdonk, S. Nikova, P. Hartel, and W. Jonker,
“Searching keywords with wildcards on encrypted data,” in
Security and Cryptography For Networks, pp. 138–153, Springer,
2010.

[27] A. Boldyreva, N. Chenette, Y. Lee, and A. Oneill, “Order-
preserving symmetric encryption,” in Advances in Cryptology
(EUROCRYPT ’09), pp. 224–241, Springer, 2009.

[28] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order preserving
encryption for numeric data,” in Proceedings of the ACM
SIGMOD International Conference on Management of Data
(SIGMOD ’04), pp. 563–574, June 2004.

[29] A. Boldyreva, N. Chenette, and A. O’Neill, “Order-preserving
encryption revisited: improved security analysis and alterna-
tive solutions,” in Proceedings of the Advances in Cryptology
(CRYPTO ’11), pp. 578–595, Springer, 2011.

[30] M. L. Fredman, E. Szemeredi, and J. Komlos, “Storing a sparse
table with o(1) worst case access time,” Journal of the ACM, vol.
31, no. 3, pp. 538–544, 1984.

[31] B. H. Bloom, “Space/time trade-offs in hash coding with
allowable errors,”Communications of the ACM, vol. 13, no. 7, pp.
422–426, 1970.

[32] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra, “Executing SQL
over encrypted data in the database-service-provider model,”
in Proceedings of the ACM SIGMOD International Conference
on Managment of Data (ACM SIGMOD ’02), pp. 216–227, June
2002.

[33] B. Hore, S. Mehrotra, and G. Tsudik, “A privacy-preserving in-
dex for range queries,” in Proceedings of the Thirtieth interna-
tional conference on Very large data bases, pp. 720–731, VLDB
Endowment, 2004.

[34] H. E. Williams, J. Zobel, and P. Anderson, “What’s next? index
structures for efficient phrase querying,” in Australasian Data-
base Conference, pp. 141–152, 1999.

[35] C. Gutwin, G. Paynter, I. Witten, C. Nevill-Manning, and E.
Frank, “Improving browsing in digital libraries with keyphrase
indexes,” Decision Support Systems, vol. 27, no. 1, pp. 81–104,
1999.

[36] V. Levenstein, “Binary codes capable of correcting spurious
insertions and deletions of ones,” Problems of Information
Transmission, vol. 1, no. 1, pp. 8–17, 1965.

www.manaraa.com

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

